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Independent Measures vs Repeated Measures



Remember, for experimental design we have 
two options:

3

Repeated

Measures:

If each participants sees every condition, we call it repeated 
measures. It is also called a within-subjects design.

Independent

Measures:

If each participants sees only one condition, we call it 
independent measures. It is also called a between-subjects 
design.

condition 1 condition 2

Independent Measures

condition 1 condition 2

Repeated Measures



The disadvantage of independent measures
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placebo

To see the advantage of repeated measures, we need to recognize the 
disadvantage with independent measures.

group 1

Let’s imagine that you are testing two pills. The green pill is a placebo. It has 
nothing in it. The red pill has a medicine that should make ratings of wellbeing 
in people higher.
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The disadvantage of independent measures
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placebo

All people come with their baseline characteristics. And these vary between 
individuals. 

group 1 group 2
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The disadvantage of independent measures
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placebo

All people come with their baseline characteristics. And these vary between 
individuals. 

group 1 group 2
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They also each have a different response to your treatment condition. 



baseline ȳ:

group 1 group 2

2 4 5 3 3 2 4 3 2 3 3 4 4 1baseline

wellbeing:
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The disadvantage of independent measures
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placebo

When you run an independent measures experiment, you can’t see these. All 
you can see are your measurements!
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All people come with their baseline characteristics. And these vary between 
individuals. 

They also each have a different response to your treatment condition. 



baseline ȳ:

group 1 group 2
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The disadvantage of independent measures
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placebo

Looking at your measures, could you conclude that your medicine increased 
ratings?

medicine0 0 0 0 0 0 0

measure:

.2 .1 .3 .1 .2 .2 .4

No. The mean rating for your medicine group is actually lower than the placebo 
group. But we know that the medicine increased ratings for this group because 
we constructed the example. What happened?
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group 1 group 2
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The disadvantage of independent measures
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placebo

The problem is that the effect of our medicine is smaller than the variation that 
humans naturally have between groups.

medicine0 0 0 0 0 0 0

measure:

.2 .1 .3 .1 .2 .2 .4

Group 2’s baseline mean is 0.4 lower than group 1 to begin with, before either 
get a treatment. The treatment has an effect of 0.2. It is not enough to 
overcome the baseline difference.
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group 2

3 2 3 3 4 4 1baseline

wellbeing:
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Repeated measures solves this!
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placebo

In repeated measures, you use the same group twice. That means you don’t 
have to worry about variation in the baseline. Because the same baseline is 
there for both conditions.

medicine0 0 0 0 0 0 0
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Notice that these are now both “group 2”. The same set of people!
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The advantage of repeated measures designs
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placebo

Looking at your measures alone, just like a real experiment, could you 
conclude that your medicine increased ratings?

medicine0 0 0 0 0 0 0

measure:

.2 .1 .3 .1 .2 .2 .4

3 2 3 3 4 4 1

group 2

Yes, probably. There is an increase. We just need to formalize our method for 
determining if that increase is statistically significant.
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Advantages and Disadvantages
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Repeated

Measures:

The advantage of repeated measures is that we have more 
sensitivity to detect small effect sizes. But the disadvantage 
is that the two conditions could potentially affect each other. 
Before using this design, you have to be sure that there is no 
chance that they could interact.

Independent

Measures:

The advantage of independent measures designs is that you 
don’t have to worry about one condition affecting the other. 
(Like giving the same people two different medicines!) The 
disadvantage is that we have less sensitivity to detect small 
effect sizes.

condition 1 condition 2

Independent Measures

condition 1 condition 2

Repeated Measures



Formalizing our measure of the effect for 
repeated measures



How do we measure the effect?
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condition 2 condition 1

Independent Measures

condition 2 condition 1
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How do we measure the effect?
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condition 2 condition 1

Independent Measures
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In an independent measures design, 
we have to look at group means. 
We have no other choice.


We cannot subtract the measure 
for one participant from the 
measure for another because they 
are different people.


So we calculate the means for each 
group, and compare them. It is the 
only way we can do it!
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How do we measure the effect?
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condition 2 condition 1

Repeated Measures
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In a repeated measures design, we 
can look within each participant for 
the effect. Because we are 
measuring them in both conditions.


So we can define our effect as the 
difference between each 
measurement. We call these 
difference scores, and we can 
give them the symbol D.


Once we calculate a difference score 
for each participant, we can 
calculate a mean of the difference 
scores for our effect. We give it the 
symbol D.



[mean, subtract] vs [subtract, mean]
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condition 2 condition 1

Independent Measures
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Repeated Measures
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Creating a t-test for D scores



We only have one sample… so… 
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In a repeated measures design, 
we only have one sample. So we 
can use the one sample t-test as 
a starting point for our test!

t =
x ̄- µ0

sx ̄

one sample t-test
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using the mean of difference 
scores (D) as our effect, not 
sample means. So we need to 
adjust the formula:

sD = 0.1

paired t-test

n

sD
t =

D - Δ0

sD
sD =

Notice that the standard error 
term is the standard error of 
means of difference scores!



one sample vs paired t-tests
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one sample t-test paired t-test

Scientific 
question

Does our sample differ from a 
population with a known mean 

(but unknown SD)?

Does our sample of difference 
scores differ from a population of 

difference scores with a known 
mean?

Null 
Hypothesis

The mean of the population that 
the sample comes from is equal 

to the mean of the known 
population (so, µ = µ0)

The mean of the population of 
difference scores that the sample 
comes from is equal to the mean 

of the known population 

Equation

Descriptive 
information

The t statistic tells us how much 
our sample mean differs from the 

population mean in terms of 
sample SE (as an estimate)

The t statistic tells us how much 
our mean of differences differs 
from the population in terms of 
the standard error of differences

Null 
distribution

t =
x ̄- µ0

sx ̄
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Running it in R
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This is just a one-sample t-test performed on difference scores. So all we need 
is a vector of difference scores, and our old friend the function t.test().

vector of Ds

t.test() knows it is 
one-sample because 
there is only one 
vector in its input. 
We tell it that the 
hypothesis is that 
the differences are 
greater (than zero).

It gives us the t, the 
df, and the p-value. 
(Ignore the CI - CIs 
are two-sided by 
definition!)



The paired t-test on raw scores
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Though conceptually the paired t-test is a one-sample t-test on difference 
scores, there is a way to compute the t-test directly from raw scores. It is 
similar to the independent samples formula because it involves two samples:

t =
(x1̄ - x2̄) - (µ1 - µ2)

s1
2 s2

2

n n+
s1s2

n
2r-

t =
(x1̄ - x2̄) - (µ1 - µ2)

s1
2 s2

2

n n+

independent samples paired

The difference between the two is this purple term that is subtracted from the 
standard error. This term makes the standard error smaller. This in turn makes 
the t larger. This is what we want. It makes the test more sensitive, just like 
the way difference scores are more sensitive!

You can see that this term is based on the correlation between the two sets of 
measures. If the correlation is high, a lot will be subtracted from the standard 
error. If there is no correlation, this term will be 0, and it will be identical to 
the independent samples t-test. This is good - if there is no correlation, the 
two samples are independent! The full denominator is just another arithmetic 
shortcut for estimating    .sD



Running the raw score equation in R
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The raw score equation is a two-sample test, but with the two samples paired. 
We can use the t.test() function for this too!

Two vectors, one 
for each condition

We have to enter 
both conditions. We 
also have to tell 
t.test() that we 
want a paired t-test 
by using paired=T. 
We also generally 
want var.equal=T.

Notice that the t, df, 
and p-value are 
identical to the one 
sample version!



OK, now for a change in topic:


t-tests are linear regression (what?!)
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Let’s create a data set to use as an example
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Let’s use an independent measures design as our example. So we have two 
groups. I will use placebo and medicine as the two groups. But I will make the 
difference between the two groups a little bigger so we can see it. Let’s say the 
response variable is a 7-point rating scale of “wellbeing”.

placebo=round(rnorm(10, mean=3, sd=.75), 1)

medicine=round(rnorm(10, mean=5, sd=.75), 1)

data = tibble(group = rep(c("placebo", "medicine"), 
each=10), wellbeing = c(placebo, medicine))

This R code creates 
two vectors of 10 
numbers, then 
combines them into 
a data set.

Here is a plot of our data points. I used this 
code:


ggplot(data, aes(x=group, y=wellbeing)) + 
geom_point(size =2) + theme_bw() + 
scale_y_continuous(limits=c(1,7), 
breaks=c(1:7), labels=c(1:7))

ȳ: 3.08

ȳ: 5.37



Linear regression on non-numeric variables 
requires dummy coding
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Remember our equation for a line:

This equation requires us to multiply x by b1. This is easy when x is a numeric 
variable because its values are already numbers. But how can we multiply x by 
a non-numeric variable like “placebo” or “medicine”?

This gives rise to two predicted values (ŷ), one for when the x has the value 
“placebo” and one for when the x has the value “medicine”.

ŷ = b1x + b0

placebo = 0

medicine = 1
ŷ = b1x + b0

The answer is that we re-code the 
levels of the variable as numbers! 
This is called dummy coding.

ŷ = b10 + b0

ŷ = b11 + b0

placebo:

medicine:

You should always make your 
boring condition 0 and your 
interesting condition 1. If they are 
both interesting, you just pick 
whichever you prefer.



Now let’s create a linear model
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I’ll use lm() to calculate the 
coefficients for me.

ŷ = b1x + b0

The output of lm() tells us that:

b0 = 3.08

b1 = 2.29

ŷ = 2.29x + 3.08
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ȳ: 3.08

ȳ: 5.37Do you recognize these values? 
I’ll put the plot here again so 
you can see them!

b0 = 3.08 ȳ: 3.08

b1 = 2.29 5.37 - 3.08 = 2.29 
ȳȳ -



Why does the model work out this way?
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This is our linear model:

Let’s work through the two possible values 
of x: 0 and 1
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ȳ: 3.08

ȳ: 5.37

ŷ = (2.29)0 + 3.08

ŷ = (2.29)1 + 3.08

placebo:

medicine:

ŷ = 3.08

ŷ = 5.37

The equation for the 0 condition 
(placebo), simply becomes the 
y-intercept b0. So the y-
intercept is the mean of the 0 
condition!

ŷ = 2.29x + 3.08

The equation for the 1 condition 
(medicine) starts at the placebo 
condition and adds the slope. So 
the slope is the difference 
between means!



What about significance tests?

29

I am going to run a t-test on the slope of the linear model and run a t-test on 
the two conditions separately.

t-test on the linear model t-test on the conditions

They yield identical results. The t for the slope is 9.266 and the t for the 
conditions is 9.266!



Why do they yield identical results?
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A t-test on a linear model asks whether the 
sample slope comes from a population with 
a known slope (typically 0).

●

●
●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

1

2

3

4

5

6

7

placebo medicine
group

we
llb
ei
ng

ȳ: 3.08

ȳ: 5.37

ŷ = 2.29x + 3.08

t =
b1 - 0

1-r2

n-2sx

sy

A t-test on two conditions asks whether the 
two means come from two populations with 
known means (typically equal so their 
difference is 0).

t =
(x1̄ - x2̄) - (µ1 - µ2)

s1
2 s2

2

n1 n2
+

In this case, the two questions are the 
same. The slope of our model is equal to the 
difference between means. So asking 
whether the slope is different from 0 is the 
same as asking whether the difference 
between means is 0.



What does this mean?
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Philosophically, it means that every time you run a t-test, you are actually 
creating a linear model of your data (with dummy coding).
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ŷ = 2.29x + 3.08
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This is a nice result for two reasons:

=

Instead of thinking about the statistics that we are doing in class as a 
collection of different tests, we can see it as one unified framework - linear 
modeling. Every test we do is a linear model!

1.

This shows us that our workflow for science is always the same: construct a 
theory, create a model, test the hypothesis. Even when it seemed like we 
were skipping modeling and going straight to t-tests, we were still modeling!

2.



What does this mean?
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Practically, it means you have two ways of doing the same thing. You can 
either choose to run a t-test (which implies a linear model), or you can choose 
to create a linear model explicitly, then calculate a t-test on its slope. There is 
no difference in the result.
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t.test() lm()


